International Journal of Latest Trends in Engineering and Technology Special Issue SACAIM 2016, pp. 454-460 e-ISSN:2278-621X

PURE AND ALMOST PURE GOLDEN GRAPHS

Kishori P. Narayankar¹ and D. Shubhalakshmi²

Abstract-A u - v path in a graph *G* is called a peripheral path if there is a path connecting *u* and *v* of length equal to the diameter of a graph *G*. A peripheral path matrix $M_p(G)$ of a graph is a $n \times n$ matrix whose entries p_{ij} are equal to one, if there is a peripheral path between v_i and v_j and zero otherwise. A graph *G* is said to be pure golden graph if all the non-zero *p*-eigenvalues of *G* are $\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}\right)$. A graph *G* is said to be almost pure golden graph if all the non-zero *p*-eigenvalues are $\left(\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}, \alpha\right)$ where, $\alpha \neq \frac{-1+\sqrt{5}}{2}$ and $\alpha \neq \frac{-1-\sqrt{5}}{2}$. In this paper construction of pure golden graph is given. Any *n* vertex tree *T* is not a pure golden graph is proved.

In this paper construction of pure golden graph is given. Any *n* vertex tree *I* is not a pure golden graph is proved. Also, for any $n \ge 3$, cycle C_n is almost pure golden graph if and only if n = 5 is proved.

Keywords: Distance (in Graphs), Peripheral path, Peripheral vertices, Peripheral path matrix of a graph, Eigenvalues, Spectrum.

I. INTRODUCTION

Graphs considered in this paper are finite, simple and unless stated otherwise, also connected. Throughout this paper, we will use the graph-theoretical notation from [1]. Let *G* be a graph with vertex set *V*(*G*) and edge set *E*(*G*) and let |V(G)| = n and |E(G)| = m. Let *u* and *v* be two vertices of a graph *G*. The *distance* d(u, v) between the vertices *u* and *v* is the length of a shortest path connecting *u* and *v*. The *eccentricity* e(u) of the vertex *u* is $max \{ d(u, v) : v \in V(G) \}$. The radius rad(*G*) and diameter diam(*G*) are the minimum and maximum eccentricity, respectively. A vertex *u* with e(u) = diam(G) is called a peripheral vertex of *G*. A set of peripheral vertices of *G* is called as *periphery* and is denoted as P(G). The cartesian product $G \times H$ of graphs G = (V(G), E(G)) and H = (V(H), E(H)) is the graph with vertex set $V(G) \times V(H)$ where vertex (a, x) is adjacent to vertex (b, y) whenever $ab \in E(G)$ and x = y or a = b and $xy \in E(H)$.

The golden ratio (symbol in the Greek latter "phi" φ) is a special number $\varphi = \frac{1+\sqrt{5}}{2}$, approximately equal to 1.6180. Our spectral graph theoretic terminology follows that of the book [3].

Periperal path matrix of G is $n \times n$ matrix,

$$M_p(G) = [p_{ij}] = \begin{cases} 1, & if there is a peripheral path between v_i and v_j \\ 0, & otherwise \end{cases}$$

The characteristic polynomial of $M_p(G)$ is $det (\alpha I - M_p(G))$, it is called the characteristic polynomial of G and is denoted by

$$\Psi(G,\alpha) = c_0\alpha^n + c_1\alpha^{n-1} + c_2\alpha^{n-2} + \ldots + c_n.$$

¹ Department of Mathematics Mangalore University, Mangalore India

² Department of Mathematics Mangalore University, Mangalore India

The roots $\alpha_1, \alpha_2, \ldots, \alpha_n$ of the polynomial $\Psi(G, \alpha)$ are called the eigenvalues of $M_p(G)$. We call the eigenvalues of $M_p(G)$ as the peripheral path eigenvalues (or *p*-eigenvalues (in short)) of *G*. Since $M_p(G)$ is a real symmetric matrix, the *p*-eigenvalues are real and can be ordered in non-increasing order, $\alpha_1 \ge \alpha_2 \ge \ldots$

 $\geq \alpha_n$. The *p*-spectrum of a graph *G* is the set of eigenvalues of $M_p(G)$ together with their multiplicities. If the distinct *p*-eigenvalues of $M_p(G)$ are, $\alpha_1 > \alpha_2 > \cdots > \alpha_n$ and their multiplicities are $m(\alpha_1)$, $m(\alpha_2)$, ..., $m(\alpha_n)$, then we shall write,

$$p - \operatorname{spec}(G) = \begin{pmatrix} \alpha_1 & \alpha_2 & \cdots & \alpha_n \\ m(\alpha_1) & m(\alpha_2) & \cdots & m(\alpha_n) \end{pmatrix}$$

Proposition 1.1. [7] Let Ψ (G, α) = $c_0\alpha^n + c_1\alpha^{n-1} + c_2\alpha^{n-2} + ... + c_n$ be the characteristic polynomial of

the graph G with respect to peripheral path matrix, then the coefficients of Ψ (G, α) satisfy the following conditions.

- $1.c_0 = 1$
- 2. $c_1 = 0$

3. $-c_2 = \frac{1}{2} \sum_{i=1}^{n} |\varepsilon_{v_i}|$ = number of peripheral paths of G.

4. $-c_3 = 2\delta$, where δ is the triple of vertices (say v_1, v_2, v_3) which are at the same distance and $d(v_1, v_2) = d(v_1, v_3) = d(v_2, v_3) = diam(G)$.

Lemma 1.2. [2] Let

$$M_2 = \begin{pmatrix} \mathsf{A}_0 & \mathsf{A}_1 \\ \mathsf{A}_1 & \mathsf{A}_0 \end{pmatrix}$$

be a symmetric 2×2 block matrix. Then the spectrum of M_2 is the union of the spectra of $A_0 + A_1$ and $A_0 - A_1$.

Definition 1.3. Let $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$ such that $V_1 \cap V_2 = \emptyset$ be any two graphs. The join, denoted by $G_1 + G_2$ is the graph obtained by joining every vertex of G_1 with every vertex of G_2 .

Theorem 1.4. [4] Suppose G is a graph of order n with $k \ge 2$, peripheral vertices such that all these k peripheral vertices are at the same distance from each other in G. Then, G is an integral graph.

Theorem 1.5. [4] Suppose C_n be a cycle on $n \ge 4$ vertices. Then C_n is an integral if and only if n is even.

Corollary 1.6. [4] Odd cycle C_n is integral if and only if n = 3.

Theorem 1.7. [4] Suppose *T* is a tree of order *n* with *k* peripheral vertices such that $k_1 = k_2 = \ldots = k_l = k$. Then, *T* is an integral, where $|P(T)| = \sum_{i=1}^{l} P_i(T)$, such that $d(v_{P_i}(T), v_{P_j}(T)) = diam(T)$ but $d(v_{P_i}(T), v_{P_i}(T)) < diam(T)$, where $P_i(T)$ is partition of periphery P(T) of *T* with $|P_i(T)| = k_{i,i} = 1, 2, \ldots, 1$ and $d(v_{P_i}(T), v_{P_j}(T))$ is the distance between the vertex $v \in P_i(T)$ and $v \in P_i(T)$.

2 Pure Golden Graph

In analogous to the definition of pure golden graph with respect to adjacency matrix [6] we define, the pure golden graph with respect to peripheral path matrix $M_p(G)$ as follows:

Definition 2.1. A graph G is said to be pure golden graph if all the non-zero p -eigenvalues of G are $\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}\right)$.

Example: Let P_4 be a path on 4 vertices and K_1 be a complete graph. Then $P_4 + K_1$, graph has *p*-eigenvalues $\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}\right)$. These are nothing but golden ratios. Hence $P_4 + K_1$ is a pure golden graph.

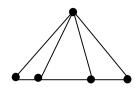


Figure 1: Pure golden graph G of order 5

Proposition 2.2. Graph $P_4 + K_1$ is the smallest pure golden graph.

Proof.: We claim that $P_4 + K_1$ is the smallest pure golden graph. If not then there exist a graph G of order less than 5 which is a golden graph. Since pure golden graph has at least 4 non-zero p -eigenvalues, the order of G, is at least 4. All connected graphs with order 4 are shown in Figure 2.

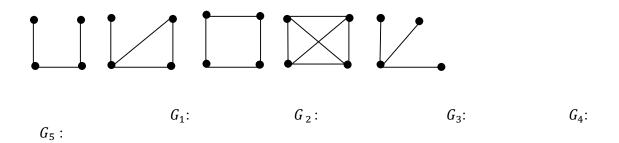


Figure 2: All graphs of order 4.

By calculating the spectrum of G_2 and from **Theorem 1.4** and **Theorem 1.7**, we observe that all these graphs are integral graphs. A contradiction to the fact that G is a golden graph. Hence the claim.

Lemma 2.3. [9] Let G be a graph of order n with k peripheral vertices and K_2 be a complete graph on 2 vertices then,

$$M_p(G \times K_2) = \begin{pmatrix} 0 & M_p(G) \\ M_p(G) & 0 \end{pmatrix}$$

Theorem 2.4. Let $G = P_4 + K_1$ be a pure golden graph and P_l be a path on 1 vertices. Then, $H = G \times P_l$ is a pure golden graph.

Proof: Denote the vertices of the graph G as v_1, v_2, v_3, v_4, v_5 and vertices of the Path P_l by u_1u_2, \dots, u_l .

Hence vertices of *H* are $(v_1, u_1), (v_1, u_2), \dots, (v_1, ul), (v_2, u_1), (v_2, u_2), \dots, (v_{2}, ul), \dots, (v_{5}, u_1), (v_{5}, u_{2}), \dots, (v_{5}, ul)$. Clearly

 $(v_1, u_1), (v_2, u_1), (v_3, u_1), (v_4, u_1), (v_1, ul), (v_2, ul), (v_3, ul), (v_4, ul)$ are the 8 peripheral vertices of *H*. Denote the peripheral vertices of *H* as w_1, w_2, \dots, w_8 . Peripheral path matrix of the graph *H* is,

where the submatrices B, B^T , C are zero matrices and A is the non-zero submatrix. Thus the non-zero p -eigenvalues of $M_p(H)$ is the non-zero p-eigenvalues of matrix A. Again matrix A can be sub divided into block matrices as,

$$A = \begin{pmatrix} 0_{4 \times 4} \\ D_{4 \times 4} \\ 0_{4 \times 4} \end{pmatrix}$$

where submatrix D is a submatrix of submatrix A. Clearly characteristic polynomial of D is

$$\Psi (D, \alpha) = \alpha^4 + \alpha^2 - 1$$

$$0 = (\alpha^2 + \alpha - 1)(\alpha^2 + \alpha - 1)$$

Which implies $(\alpha^2 - \alpha - 1) = 0$ or $(\alpha^2 + \alpha - 1) = 0$

Therefore, $\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}\right)$ are the non-zero p -eigenvalues of $M_p(D)$

Hence,

$$p - \operatorname{spec}(D) = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{-1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} & \frac{-1-\sqrt{5}}{2} \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

From **Lemma 1.2** we have, $p - \operatorname{spec}(A)$ is the union of $p - \operatorname{spec}(D)$ and $p - \operatorname{spec}(-D)$. Thus,

$$p \operatorname{-spec}(A) = \begin{pmatrix} \frac{1+\sqrt{5}}{2} & \frac{-1+\sqrt{5}}{2} & \frac{1-\sqrt{5}}{2} & \frac{-1-\sqrt{5}}{2} \\ 2 & 2 & 2 & 2 \end{pmatrix}$$

Hence non-zero eigenvalues of $M_p(H)$ contains eigenvalues $\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}\right)$.

Hence *H* is a pure golden graph.

Theorem 2.5. Let G be a pure golden graph of order n with $diam(G) \ge 2$ and K_2 be a complete graph on 2 vertices. Then, there exist a pure golden graph G_i , i = 1, 2, ... of order $n 2^i$ with $iam(G_i) > 2$, i = 1, 2, 3, ... where $G_1 = G \times K_2$, and $G_i = G_{i-1} \times K_2$, i = 2, 3, ...

Proof: Let G be a pure golden graph of order $n \ge 5$ and K_2 be a complete graph on 2 vertices. From Lemma 2.3 we have,

$$M_p(G_1) = M_p(G \times K_2,) = \begin{pmatrix} 0 & M_p(G) \\ M_p(G) & 0 \end{pmatrix}$$

Since G is a pure golden graph of order n its non-zero p -eigenvalues are $\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}\right)$

Also from **Lemma 1.2** we have, $p \operatorname{-spec}(M_p(G_1))$ is the union of $p \operatorname{-spec}(M_p(G))$ and $p \operatorname{-spec}(-M_p(G))$ Hence $p \operatorname{-spec}(M_p(G_1))$ contains $\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}, \frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}\right)$ as its p-eigenvalues. So G_1 is a golden graph of order 2n as, $G_1 = G \times K_2$. Clearly G_1 contains two copies of G. Hence $O(G) = O(G \times K_2) = 2n$. Similarly $G_2 = G_1 \times K_2$, is a golden graph of order 2^2 n as, $G_2 = G_1 \times K_2$, Clearly G_2 contains two copies of G_1 . Hence $O(G_2) = O(G_1 \times K_2) = 2^2$ n. Inductively $G_i = G_{i-1} \times K_2$, is a golden graph of order 2^i n as, $G_i = G_{i-1} \times K_2$. Clearly G_i contains two copies of G_{i-1} . Hence $O(G_i) = O(G_{i-1} \times K_2) = 2^i$ n, $i \ge 1$.

Corollary 2.6.Let $G = P_4 + K_1$ be a pure golden graph of order 5 and K_2 be a complete graph on 2 vertices. Then, there exist a pure golden graph G_i , i = 1, 2, ... of order 2^i 5 with $diam(G_i) > 2$, where $G_1 = G \times K_2$. And $G_i = G_{i-1} \times K_2$, i = 2, 3, ...

Proof: Proof follows from **Theorem 2.5** by taking $G = P_4 + K_1$.

Theorem 2.7. Any *n*-vertex tree*T* is not a pure golden graph.

Proof: Assume that tree T of order n is a pure golden graph. Hence its non-zero p-eigenvalues are $\alpha_1 = \frac{1+\sqrt{5}}{2}$, $\alpha_2 = \frac{1-\sqrt{5}}{2}$, $\alpha_3 = \frac{-1+\sqrt{5}}{2}$, $\alpha_4 = \frac{-1-\sqrt{5}}{2}$. Clearly $\alpha_1 = -\alpha_4$ and $\alpha_2 = -\alpha_3$. Let the multiplicities of α_1 and α_4 be l, multiplicities of α_2 and α_3 be r and assume that zero p - eigenvalues has multiplicitys.

Thus the characteristic polynomial of T can be expressed as,

$$= \alpha^{2l+2r+s} - \left[\binom{l}{1} \alpha_1^2 + \binom{r}{1} \alpha_2^2 + \cdots \right]$$

Clearly n = 2l + 2r + s. By **Propositon 1.1**, we have,

T:

$$\binom{l}{1}\alpha_1^2 + \binom{r}{1}\alpha_2^2 = \text{number of peripheral paths in T.}$$

But $\alpha_1^2 = \left(\frac{1+\sqrt{5}}{2}\right)^2 = \frac{3+\sqrt{5}}{2}$ and $\alpha_2^2 = \left(\frac{1-\sqrt{5}}{2}\right)^2 = \frac{3-\sqrt{5}}{2}$
Thus number of peripheral paths in $T = l\left(\frac{3+\sqrt{5}}{2}\right) + r\left(\frac{3-\sqrt{5}}{2}\right)$
$$= \frac{3l+3r}{2} + \frac{\sqrt{5}(l-r)}{2}.$$

This equation holds when l - r = 0. Since l > 0 and r > 0, l = r must hold. Hence number of peripheral paths in $T = \frac{6l}{2} = 3l$. Since there are 4 non-zero *p*-eigenvaluestogether with the multiplicity *l*, number of peripheral vertices is at least 4*l*. If l = 1, then tree *T* has at least 4 peripheral vertices with 3 peripheral paths between them and such type of tree *T* is of the form, as seen in Figure 3.

Figure 3: Tree T with four peripheral vertices.

But from **Theorem 1.7**, T is an integral tree. A contradiction to the fact that tree T is a pure golden tree and its only non-zero p -eigenvalues are

$$\left(\frac{1+\sqrt{5}}{2},\frac{1-\sqrt{5}}{2},\frac{-1+\sqrt{5}}{2},\frac{-1-\sqrt{5}}{2}\right)$$

If $l = m, m \ge 2$ then tree *T* has at least 4m peripheral vertices with 3m number of peripheral paths between them, which is not possible in a tree because if tree *T* has 4m peripheral vertices then it requires at least 4m - 1 number of peripheral paths between them., such type of tree *T* is of the form, as seen in Figure 4.

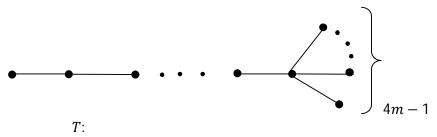


Figure 4: Tree T with 4m - 1 peripheral vertices.

Hence any n-vertex tree T is not a pure golden graph.

3 Almost Pure Golden Graph.

Definition 3.1. A graph G is said to be almost pure golden graph if all the non-zero p eigenvalues are $\left(\frac{-1+\sqrt{5}}{2}, \frac{-1-\sqrt{5}}{2}, \alpha\right)$ where $\alpha \neq \frac{-1+\sqrt{5}}{2}$ and $\alpha \neq \frac{-1-\sqrt{5}}{2}$. *Example:* Let C_5 be a cycle on 5 vertices. C_5 has p -eigenvalues $\left(2, 2\left(\frac{-1+\sqrt{5}}{2}\right), 2\left(\frac{-1-\sqrt{5}}{2}\right)\right)$ Hence C_5 is an almost pure golden graph.

Proposition 3.2. Cycle on 5 vertices, C_5 is the smallest almost pure golden graph.

Proof: Proof is analogous to the proof of Proposition 2.2

Theorem 3.3. For any $n \ge 3$, Cycle C_n is almost pure golden graph if and only if n = 5.

Proof: Let C_n be almost pure golden graph. From **Theorem 1.5** and from **Corollary 1.6** we have *n* is odd and $n \ge 5$.

p-spectrum of C_n is $2\cos\left[\frac{\pi r(n-1)}{n}\right]$, r = 1, 2, ..., n. Therefore,

$$2\cos\left[\frac{\pi r(n-1)}{n}\right] = \frac{-1-\sqrt{5}}{2}, \text{ for some } r.$$

Which implies $\cos\left[\frac{\pi r(n-1)}{n}\right] = \frac{-1-\sqrt{5}}{4}.$
But we known that, $\cos 144^0 = \frac{-1-\sqrt{5}}{4}$

Therefore,
$$\left[\frac{\pi r(n-1)}{n}\right] = 2l\pi \pm 144^{\circ}$$

Which implies $\frac{n-1}{n} = \frac{10l \pm 4}{5r}$

Here l = 0 because l being the number of full rotations and π representing only half of the rotation.

Hence, $n = \frac{5r}{5r-4}$, for this we get integer value only when r = 1 and when r = 1, n = 5. Hence cycle C_n is almost pure golden graph when n = 5.

Converse part is obvious.

REFERENCES

- F. Buckley, F. Harary, "Distance in Graphs", Addison-Wesley, Red-wood 1990. [1]
- [2] Philip J. Davis, "Circulant matrices," Wiley, New York, 1979.
- D. M. Cvetkovic, M. Doob, H. Sachs, "Spectra of Graphs Theory and Application", Academic Press, [3] New York, 1980.
- Kishori P. Narayankar, Lokesh S. B. "Peripheral Path Integral Graph and Its Energy", (submitted). [4]
- Horn, Roger A.; Johnson, Charles R., "Topics in Matrix Analysis", Cambridge University Press,(1991) [5]
- [6] R. Balakrishnan,"The energy of a graph", Linear Algebra and its Applications 387 pp-287-295 (2004)
- [7] Kishori P. Narayankar, Lokesh S.B., "Peripheral Path Energy of a Graph", (submitted).
- [8] H. B. Walikar, Narayan Swamy, "Golden Graphs-I", Internaional Journal of Mathematics Trends and Technology, 7 pp- 50-53 (2014).
- [9] Kishori P. Narayankar, Lokesh S.B., "Peripheral Path Energy of 1-eccentric Graph", (submitted)