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I. INTRODUCTION 
Graphs considered in this paper are finite, simple and unless stated otherwise, also connected. 
Throughout this paper, we will use the graph-theoretical notation from [1]. Let ܩ be a graph 
with vertex set ܸ (ܩ) and edge set (ܩ)ܧ and let |ܸ(ܩ)| = ݊ and |(ܩ)ܧ| = ݉.  Let ݑ and ݒ be 
two vertices of a graph   ܩ. The ݀݅ݑ)݀ ݁ܿ݊ܽݐݏ,  is the length ݒ and ݑ between the vertices ( ݒ
of a shortest path connecting ݑ and  ݒ. The ݁ܿܿ݁݊(ݑ)݁ ݕݐ݅ܿ݅ݎݐ of the vertex 
(ݒ,ݑ)݀ } ݔܽ݉ is  ݑ ∶ ∋ ݒ  are the (ܩ)݉ܽ݅݀ ݎ݁ݐ݁݉ܽ݅݀ and (ܩ)݀ܽݎ ݏݑThe rܽ݀݅.{(ܩ) ܸ 
minimum and maximum eccentricity, respectively. A vertex ݑ with ݁ (ݑ) =  is (ܩ)݉ܽ݅݀
called a peripheral vertex of ܩ.  A set of peripheral vertices of ܩ is called as ݅ݎ݁ℎ݁ݕݎ and 
is denoted as  ܲ(ܩ). The cartesian product ܩ ܩ of graphs ܪ× = ܪ and ((ܩ)ܧ,(ܩ)ܸ) =
(ܩ) ܸ is the graph with vertex set ((ܪ)ܧ,(ܪ)ܸ) ×  is adjacent to (ݔ,ܽ) where vertex (ܪ) ܸ
vertex (ܾ, ∋ ܾܽ whenever (ݕ = ݔ and (ܩ)ܧ  ܽ or ݕ =  ܾ and ݕݔ ∈  .(ܪ)ܧ 
The golden ratio (symbol in the Greek latter "phi" ߮) is a special number   φ =  ା √


,  

approximately equal to 1.6180.  Our spectral graph theoretic terminology follows that of the 
book [3]. 
 
 Periperal path matrix of ܩ is ݊ × ݊ matrix, 
 

(ܩ)ܯ ]  =  ]  = ൜   
1, ݒ ݊݁݁ݓݐܾ݁ ℎݐܽ ݈ܽݎℎ݁݅ݎ݁ ܽ ݏ݅ ݁ݎℎ݁ݐ ݂݅ ݒ ݀݊ܽ  
݁ݏ݅ݓݎℎ݁ݐ    ,0

 

 
The characteristic polynomial of  ܯ(ܩ)  is ݀݁ݐ ቀ ܫߙ −  ቁ,  it is called the characteristic(ܩ)ܯ
polynomial of ܩ and is denoted by  
 

(ߙ,ܩ) ߖ  =  ܿߙ  + ܿଵߙିଵ + ܿଶߙିଶ+  . . . + ܿ . 
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Abstract-A ݑ −  of length equal to ݒ and ݑ is called a peripheral path if there is a path connecting ܩ path in a graph ݒ
the diameter of a graphܩ. A peripheral path matrix ܯ(ܩ) of a graph is a ݊ × ݊ matrix whose entries   are equal to 
one, if there is a peripheral path between ݒ  and ݒ and zero otherwise. A graph ܩ is said to be pure golden graph 

if all the non-zero -eigenvalues of ܩ are ቀ  ଵା √ହ
ଶ

,   ଵ ି √ହ
ଶ

,  ିଵା √ହ
ଶ

,  ିଵି√ହ
ଶ

  ቁ .  A graph ܩ is said to be almost pure 

golden graph if all the non-zero -eigenvalues are ቀ  ିଵା √ହ
ଶ

,  ିଵି√ହ
ଶ

, ߙ  ,ቁ  whereߙ ≠ ିଵା √ହ
ଶ

   and ߙ ≠  ିଵ ି  √ହ
ଶ

   . 
In this paper construction of pure golden graph is given. Any ݊ vertex tree ܶ is not a pure golden graph is proved. 
Also, for any ݊ ≥ 3,  cycle ܥ is almost pure golden graph if and only if ݊ = 5 is proved. 
 
Keywords:  Distance (in Graphs), Peripheral path, Peripheral vertices, Peripheral path matrix of a graph,  Eigenvalues,  
Spectrum. 
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The roots  ߙଵ ,ߙଶ  , . . .  .  (ܩ)ܯ are called the eigenvalues of (ߙ,G)ߖ   of the polynomialߙ,
We call the eigenvalues of ܯ(ܩ)  as the peripheral path eigenvalues (or -eigenvalues (in 
short)) of ܩ. Since ܯ(ܩ)  is a real symmetric matrix, the -eigenvalues are real and can be 
ordered in non-increasing order, ߙଵ ≥ ଶߙ   ≥  … 
≥  together with their  (ܩ)ܯ is the set of eigenvalues of ܩ spectrum of a graph-  .  Theߙ 
multiplicities. If the distinct -eigenvalues of ܯ(ܩ)  are, ߙଵ > ଶߙ > ⋯ > ߙ  and their 
multiplicities are ݉(ߙଵ)  ,݉(ߙଶ)  , . . .  ,then we shall write ,(ߙ)݉,
ቀ = (ܩ)spec - 

ଵߙ ଶߙ ⋯ ߙ
 m ( ߙଵ) m(ߙଶ) ⋯ m( ߙ) ቁ 

 
Proposition 1.1. [7] Let  ߖ (G, ߙ) = ܿߙ  + ܿଵߙିଵ + ܿଶߙିଶ + … + ܿ  be the 
characteristic polynomial of     
   the graph G with respect to peripheral path matrix, then the coefficients of   ߖ (G, ߙ) satisfy 
the following  
 conditions.  

 
1. ܿ =  1 
2. ܿଵ  =  0 
3.  − ܿଶ  = ଵ

ଶ
 ∑ หߝ௩ห =

ୀଵ  number of peripheral paths of ܩ. 
4. − ܿଷ  = ,ଵݒ is the triple of vertices (say ߜ where ,ߜ2   ଷ, ) which are at the sameݒ,ଶݒ
distance and ݀(ݒଵ, (ଶݒ = ,ଵݒ)݀  (ଷݒ = ,ଶݒ)݀ (ଷݒ =  .(ܩ)݉ܽ݅݀
 
Lemma 1.2. [2]   Let 

ଶ =൬Aܯ                                           Aଵ
Aଵ A

൰ 

 
be a symmetric 2 × 2 block matrix. Then the spectrum of ܯଶ is the union of the spectra 
of ܣ ܣ ଵ andܣ + −  .ଵܣ 
 
Definition 1.3.  Let ܩଵ = ( ଵܸ,ܧଵ) and ܩଶ = ( ଶܸ ଶ) such that ଵܸܧ,  ∩ ଶܸ =  ∅ be any two 
graphs. The join, denoted by ܩଵ +  ଵ withܩ ଶ is the graph obtained by joining every vertex ofܩ
every vertex of ܩଶ. 
 
Theorem 1.4.  [4] Suppose ܩ is a graph of order n with ݇  ≥ 2 , peripheral vertices such that 
all these ݇ peripheral vertices are at the same distance from each other in ܩ. Then, G is an 
integral graph. 
 
Theorem 1.5.  [ 4]  Suppose Cn be a cycle on ݊ ≥ 4 vertices. Then Cn is an integral if and 
only if n is even. 
 
Corollary 1.6. [4] Odd cycle Cn is integral if and only if n = 3. 
 
Theorem 1.7.  [4] Suppose ܶ is a tree of order ݊ with ݇ peripheral vertices 
such that ݇ଵ  = ݇ଶ =  . . . =  ݇  =   ݇. Then, ܶ is an integral, where  |ܲ(ܶ)| = ∑ P୧(T)

ୀଵ ,  
such that ݀(ݒ(ܶ), ((ܶ)ೕݒ = ݀݅ܽ݉(ܶ)  but ݀൫ݒ(ܶ),ݒ(ܶ) ൯ < ݀݅ܽ݉(ܶ),  where P୧(T) 
is partition of periphery ܲ(ܶ) of  ܶ with | P୧(T) | = k i , i = 1,2,  . . . ,l  and ݀(ݒ(ܶ),   ((ܶ)ೕݒ
is the distance between the vertex ݒ ∈ P୧(T) and ݒ ∈  P୨(T) . 
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2 Pure Golden Graph 
In analogous to the definition of pure golden graph with respect to adjacency matrix [6]  we 
define, the pure golden graph with respect to peripheral path matrix ܯ(ܩ)  as follows: 
 
Definition 2.1.  A graph G is said to be pure golden graph if all the non-zero  -eigenvalues 
of G are ቀ  ା √


,    ି √


,  ିା √


,  ିି√


  ቁ. 

Example: Let ସܲ be a path on 4 vertices and K1 be a complete graph. Then ସܲ +  ଵ, graphܭ
has -eigenvalues ቀ  ା √


,    ି  √


,  ିା √


,  ିି√


  ቁ .  These are nothing but golden ratios. 

Hence ସܲ +  .ଵ is a pure golden graphܭ
 

                                                             
                                                           Figure 1: Pure golden graph G of order 5 
 
Proposition 2.2.  Graph ସܲ +  .ଵ is the smallest pure golden graphܭ
 
Proof.:  We claim that ସܲ +  ଵis the smallest pure golden graph. If not then there exist aܭ
graph ܩ of order less than 5 which is a golden graph. Since pure golden graph has at least 4 
non-zero  -eigenvalues, the order of ܩ, is atleast 4. All connected graphs with order 4 are 
shown in Figure 2. 
 
                               

 
                                                                                                                               
                   
                  :ସܩ                    :ଷܩ                         : ଶ ܩ                     :ଵܩ                                           
        : ହܩ     
 
                          
                                                    Figure 2:  All graphs of order 4. 
 
By calculating the spectrum of ܩଶ and from Theorem 1.4 and Theorem 1.7 , we observe that 
all these graphs are integral graphs. A contradiction to the fact that ܩ is a golden graph. 
Hence the claim. 
 
Lemma 2.3. [9] Let ܩ be a graph of order ݊ with ݇ peripheral vertices and  ܭଶ be a complete 
graph on 2 vertices then,  
 

× ܩ) ܯ ଶ  ) =   ቆܭ 
0 (ܩ)ܯ

(ܩ)ܯ 0 ቇ 
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Theorem 2.4. Let ܩ = ସܲ +  ,ଵ   be a pure golden graph and ܲbe a path on l vertices. Thenܭ
ܪ = ܩ × ܲ  is a pure          golden graph. 
 
Proof : Denote the vertices of the graph G as ݒଵ, ,ସݒ,ଷݒ,ଶݒ  ହ and vertices of the   Path ܲݒ
by ݑଵݑଶ, ,   . . ݑ.   .   
Hence vertices of ܪ are (ݒଵ  , ,(ଵݑ .   ,( 2ݑ,  ଵݒ) . . ,( ݈ݑ,ଵݒ)   , ,(ଵݑ, ଶݒ) ,(  2ݑ,ଶݒ)
. . ,ଶݒ)  . ,(  ݈ݑ . . . , ,ହݒ) ,( ଵݑ ,  .  .  .,(2ݑ, ହݒ) ,ହݒ)  Clearly .( ݈ݑ
,(ଵݑ,ଵݒ) ,ଶݒ) ,( ଵݑ ,(ଵݑ,ଷݒ) ,(ଵݑ,ସݒ) ,(݈ݑ,ଵݒ) ,(݈ݑ,ଶݒ) ,(݈ݑ,ଷݒ)  are the 8 peripheral  ( ݈ݑ,ସݒ)
vertices of ܪ. Denote the peripheral vertices of ܪ as ݓଵ,ݓଶ, ,  Peripheral path  .଼ݓ,  .  .  .
matrix of the graph ܪ is, 
 

                = (ܪ)ܯ

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎛

0 0 0 0 0 0 1 1 0 0 ⋯ 0
0 0 0 0 0 0 0 1 0 0 ⋯ 0
0 0 0 0 1 0 0 0 0 0 ⋯ 0
0 0 0 0 1 1 0 0 0 0 ⋯ 0
0 0 1 1 0 0 0 0 0 0 ⋯ 0
0 0 0 1 0 0 0 0 0 0 ⋯ 0
1 0 0 0 0 0 0 0 0 0 ⋯ 0
1 1 0 0 0 0 0 0 0 0 ⋯ 0

0 0 0 0 0 0 0 0 0 0 ⋯ 0
0 0 0 0 0 0 0 0 0 0 ⋯ 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋯ 0
0 0 0 0 0 0 0 0 0 0 ⋯ 0⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎞

ହ×ହ

  

 

≅ ൭
଼× ଼ܣ

଼× ି଼்ܤ

อ
ି଼× ଼ܤ

ି଼ ×ି଼ܥ

൱ 

 
where the submatrices ்ܤ ,ܤ  is the non-zero submatrix. Thus the ܣ are zero matrices and ܥ, 
non-zero  -eigenvalues of ܯ(ܪ) is the non-zero –eigenvalues of matrix ܣ.  Again matrix 
 ,can be sub divided into block matrices as ܣ
 

൭ = ܣ
0ସ ×ସ

ସ×ସܦ

อ
ସ×ସܦ

0ସ×ସ

൱ 

 
where submatrix ܦ is a submatrix of submatrix ܣ. Clearly characteristic 
polynomial   of ܦ is 
= (ߙ ,D) ߖ                                                ସߙ + – ଶߙ   1 

0 = ଶߙ ) + ߙ − ଶߙ )(1 + ߙ  − 1) 
Which implies ( ߙଶ − − ߙ 1)  = 0  or  ( ߙଶ + ߙ  − 1)  = 0 
 
Therefore, ቀ  ା √


,    ି √


,  ି ା √


,  ିି√


  ቁ  are the non-zero  -eigenvalues of ܯ(ܦ) 

 
Hence,   

ቆ = (ܦ)spec - 
 ା √


 ିା √


   ି √


 ି ି√


1 1 1 1

ቇ 
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From Lemma 1.2 we have,   - spec(ܣ) is the union of  -spec(ܦ) and 
 .(ܦ−)spec- 
Thus, 

ቆ = (ܣ)spec- 
 ା √


 –ା √


   – √


 –ି√


2 2 2 2

ቇ 

Hence non-zero eigenvalues of ܯ(ܪ) contains eigenvalues  ቀ  ା √


,    ି √


,  ିା √


,
 ିି√


  ቁ . 

Hence ܪ is a pure golden graph. 
 
Theorem 2.5.  Let ܩ be a pure golden graph of order n with ݀݅ܽ݉(ܩ) ≥ 2 and K2  be a 
complete graph on 2 vertices. Then, there exist a pure golden graph ܩ , ݅ =  1, 2, . ..  of order 
݊ 2 with ݅ܽ݉(ܩ  ) >  2, ݅ =  1, 2, 3, .. . where ܩଵ = ܩ × ܩ ଶ,  andܭ  = ିଵܩ  ,ଶܭ × ݅ =
2, 3, . ..  
 
Proof:  Let ܩ be a pure golden graph of order ݊ ≥ 5 and ܭଶ be a complete graph on 2 
vertices. From Lemma 2.3 we have, 
 

ܩ) ܯ = (ଵܩ)ܯ × ଶ,  ) =   ቆܭ 
0 (ܩ)ܯ

(ܩ)ܯ 0 ቇ 

 
Since ܩ is a pure golden graph of order ݊   its non-zero   -eigenvalues are ቀ  ା √


,

   ି √


,  ିା √


,  ିି√


  ቁ 
Also from Lemma 1.2  we have,   -spec(ܯ(ܩଵ) )is the union of   –spec (ܯ(ܩ)) and    –

spec ( -  ܯ(ܩ)) Hence   –spec ܯ(ܩଵ) contains  ቀ  ା √


,    ି √


,  ିା √


,  ି ି√


  ቁ  as its  
ଵܩ ,ଵ is a golden graph of order 2݊  asܩ eigenvalues. So-  = ܩ ×  ଵ containsܩ ଶ.  Clearlyܭ 
two copies of ܩ. Hence ܱ(ܩ ) = × ܩ)ܱ ( ଶܭ  =  2݊. Similarly ܩଶ = ଵܩ × ଶܭ  ,   is a golden 
graph of order 2ଶ n  as, ܩଶ = ଵܩ ×  ଵ  . Henceܩ ଶ    contains two copies ofܩ ଶ,   Clearlyܭ 
(ଶܩ)ܱ  = ଵܩ)ܱ   × (ଶܭ   =  2ଶ n .  Inductively ܩ = ିଵܩ   × ଶܭ  ,   is a golden graph of order 
2  n  as, ܩ = ିଵܩ  × (ܩ)ܱ ିଵ  . Henceܩ    contains two copies ofܩ ଶ . Clearlyܭ  =
ିଵܩ )ܱ (ଶܭ ×  = 2  n, ݅ ≥ 1. 
 
Corollary 2.6.Let ܩ = ସܲ   +  ଶ be a complete graph on 2ܭଵbe a pure golden graph of order 5 andܭ
vertices. Then, there exist a pure golden graphܩ  , ݅ =  1, 2, ..  of order 2  5with ݀݅ܽ݉(ܩ) >  2, 
where ܩଵ = × ܩ ܩଶ.  Andܭ  = ିଵܩ   × ,ଶܭ  ݅ =  2, 3, . .. 
 
Proof:  Proof follows from Theorem 2.5 by taking ܩ = ସܲ ଵܭ+  . 
 
Theorem 2.7.Any ݊-vertex treeܶ  is not a pure golden graph. 
 
Proof:Assume that tree ܶ of order ݊ is a pure golden graph. Hence its non-zero -eigenvalues are 
ଵߙ =   + √


, ଶߙ =     − √


, ଷߙ =   −+ √


, ସߙ =   − − √


.Clearly ߙଵ = ଶߙ ସandߙ−  =  ଷ.  Let theߙ−

multiplicities of ߙଵ and ߙସbe  ݈,  multiplicities of ߙଶ and ߙଷ be ݎ and assume that zero  - eigenvalues 
has multiplicityݏ. 
Thus the characteristic polynomial of ܶ can be expressed as, 
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(ߙ,ܶ) ߖ  = ଶߙ)  − ଶߙ)ଵଶ)ߙ − ߙ) ଶଶ)ߙ − 0)௦ 
By expanding  the above equation and collecting like powers of  ߙ we have, 
 

= ଶାଶା௦ߙ  −  ൬
݈
1
൰ߙଵଶ + ቀ

ݎ
1
ቁߙଶ  

ଶ + ⋯  ൨ 
 
Clearly݊ =  2݈ + ݎ2 +  , By Propositon 1.1, we have .ݏ
 
൫ ଵ൯ߙଵ

ଶ + ൫ଵ൯ߙଶ  
ଶ = number of peripheral paths in T. 

But  ߙଵଶ =   ቀ + √

ቁ
ଶ

=  ଷ ା √ହ
ଶ

and ߙଶଶ =  ቀ− √

ቁ
ଶ

=  ଷ ି √ହ
ଶ

 

Thus number of peripheral paths in  ܶ =   ݈ ቀଷ ା √ହ
ଶ

ቁ + r ቀଷି √ହ
ଶ
ቁ 

=  ଷାଷ
ଶ

 + √ହ(ି)
ଶ

 . 
This equation holds when ݈ − ݎ = 0. Since ݈ >  0 and  ݎ > 0, ݈ =  must hold.Hence number ofݎ
peripheral paths in ܶ =  

ଶ
= 3݈.Since there are 4 non-zero –eigenvaluestogether with the 

multiplicity ݈, numberof peripheral vertices is atleast 4݈. If݈ = 1, then tree ܶ has atleast 
4 peripheralvertices with 3 peripheral paths between them and such type of tree ܶ is  of theform,  as 
seen in Figure 3.          

 
                                   ܶ:              Figure 3: Tree ܶ with four peripheral vertices. 
 
But from Theorem 1.7,   ܶ is an integral tree. A contradiction to the fact that tree T is a pure 
golden tree and its only non-zero  -eigenvalues are 
 

ቆ 
  +  √

 ,
   – √

 ,
 − +  √

 ,
 − − √

   ቇ  

 If  ݈ = ݉,݉ ≥ 2  then tree ܶ has atleast 4݉ peripheral vertices with 3݉ number of 
peripheral paths between them , which is not possible in a tree because   if tree  ܶ has  4݉ 
peripheral vertices  then it requires atleast  4݉− 1  number of peripheral paths  between 
them., such type of  tree  ܶ is of the form ,  as  seen in Figure 4. 
 

4݉− 1   
                    ܶ:               
                              Figure 4: Tree ܶ with 4݉ − 1    peripheral vertices. 
 
Hence any n-vertex tree   ܶ is not a pure golden graph. 
 
3 Almost Pure Golden Graph. 
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Definition 3.1.  A graph ܩ is said to be almost pure golden graph if all the non-zero  -
eigenvalues are  ቀ ିା √


,   ିି√


  ,હቁ where  ߙ ≠   ିା √


    and  ߙ ≠   ିି  √


  . 

Example: Let ܥହ be a cycle on 5 vertices. ܥହ  has  -eigenvalues 
ቀ2, 2 ቀ ିା √


ቁ , ቀ –ି √


    ቁ ቁ 

Hence ܥହ  is an almost pure golden graph. 
 
Proposition 3.2.  Cycle on 5 vertices, ܥହ  is the smallest almost pure golden graph. 
 
Proof: Proof is analogous to the proof of Proposition 2.2 
 
Theorem 3.3.  For any ݊ ≥ 3, Cycle ܥ    is almost pure golden graph if and only if  ݊ =  5. 
 
Proof: Let ܥ   be almost pure golden graph. From Theorem 1.5 and from Corollary 1.6 we 
have ݊ is odd and ݊  ≥ 5. 
ܥ  spectrum of-     is 2 cos ቂగ(ିଵ)


ቃ  , = ݎ  1, 2, …  ݊. 

Therefore, 
                         2 cos ቂగ(ିଵ)


ቃ =   ିି √


 ,    for some ݎ. 

Which implies  cos ቂగ(ିଵ)


ቃ =   ି ି √


 . 

But we known that, ܿ144ݏ =   ି ି √


 

               Therefore,  ቂగ(ିଵ)


ቃ =  144  ± ߨ2݈

               Which implies   ିଵ


 =  ଵ±ସ
ହ

 
Here ݈ = 0 because ݈ being the number of full rotations and  ߨ representing only half of the 
rotation. 
Hence,݊ = ହ

ହିସ
,   for this we get integer value only when ݎ = 1 and when ݎ = 1,݊ =  5. 

Hence cycle ܥ  is almost pure golden graph when ݊ = 5. 
 
Converse part is obvious. 
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